Henschel Hs 117 'Schmetterling'

Henschel Hs 117 'Schmetterling'


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Henschel Hs 117 'Schmetterling'

O Henschel Hs 117 'Schmetterling' (Butterfly) foi um míssil teleguiado terra-ar que quase entrou em serviço nos últimos dias do Terceiro Reich.

Henschel sugeriu pela primeira vez a construção de um míssil terra-ar em 1941, com a designação Hs 297. No início, o RLM (Ministério da Aeronáutica Alemão) não estava interessado no projeto, mas em 1943, depois que ficou claro que a guerra estava acontecendo contra a Alemanha, Henschel foi ordenado a produzir o míssil com urgência, com a nova designação de Hs 117.

O Hs 117 era um equipamento de aparência estranha. Tinha um nariz assimétrico, que tinha um cone pontiagudo à direita e uma hélice à esquerda, usada para alimentar um pequeno gerador. Dois foguetes de reforço foram transportados para a decolagem, montados acima e abaixo da fuselagem. Um terceiro foguete foi construído no míssil. As asas inclinadas para trás eram mais convencionais e de alguma forma se assemelhavam às dos mísseis de cruzeiro mais recentes. O foguete era dirigido por barras Wagner controladas por solenóide na borda de fuga das asas e no plano da cauda.

A potência de lançamento foi fornecida por dois foguetes de combustível sólido Schmidding 109-553, cada um dos quais forneceu 3.850 libras de empuxo por quatro segundos, levando o foguete a 680 mph. O foguete interno era normalmente um BMW 109-558, que usava R-Stoff (que se auto inflamou) como combustível principal e SV-Stoff para oxidar o R-Stoff. Também era possível usar o foguete Walter 109-729, que usava gasolina de baixa octanagem (Br-Stoff), SV-Stoff e um dispositivo de ignição a álcool.

O míssil foi controlado usando o sistema Kehl / Strassburg, que tinha o nome de código 'Tarsival' e a designação FuG203 / 230. Este usava quatro frequências de rádio, duas para os controles verticais e duas para os horizontais. Todo o sistema era controlado por joystick. Uma quinta frequência foi usada para detonar a ogiva.

O Hs 117 não era um instrumento de precisão. Não se esperava que acertasse diretamente em aeronaves inimigas e, em vez disso, confiou na explosão para danificar ou destruir seus alvos. Foi lançado a partir de um suporte de canhão antiaéreo modificado, apontado na direção geral do alvo. Uma vez que o míssil estivesse no ar, um flair (de dia) ou luz (de noite) seria aceso na cauda, ​​para permitir que o controlador seguisse seu caminho. O controlador usaria um telescópio ótico normal para seguir o foguete e o joystick para trazê-lo para o meio de um grupo de aeronaves inimigas, onde seria detonado. Algum trabalho foi feito em um sistema de controle baseado em radar, que usava dois tubos de raios catódicos - um para o alvo e outro para o míssil. O controlador usou o joystick para manter os pontos juntos.

O primeiro lançamento de teste do Hs 117 foi feito em maio de 1944 e, em setembro, vinte e dois lançamentos foram feitos, incluindo alguns com o Hs 117H (veja abaixo). O míssil podia atingir 36.000 pés e tinha um alcance de até dez milhas. Em dezembro, o Hs 117 foi colocado em produção, mas as primeiras entregas não eram esperadas até março de 1945, e a produção total não era esperada até novembro. Esperava-se que a primeira unidade operacional entraria em serviço em março, mas a guerra terminou antes que o Hs 117 começasse a operar.

O Hs 117H era um míssil ar-ar baseado no Schmetterling padrão. Não precisava de foguetes de reforço externos e carregava uma ogiva maior de 220 libras. O sistema de orientação era o mesmo da versão lançada ao solo, embora o controlador estivesse em uma aeronave parente próxima. O Hs 117H poderia ser lançado de um alcance de até 6,2 milhas, e poderia atingir alvos 16.500 pés acima da aeronave principal. O trabalho no Hs 117H continuou em 1945, e o projeto foi um dos poucos a sobreviver a um corte violento em janeiro de 1945, mas nunca foi usado operacionalmente.


Henschel Hs 117 'Schmetterling' - História

Para o & quot8-117 & quot Hs.117 & quotSchmetterling & quot, o Professor Wagner encarregou J.J.Henrici de montar uma equipe de produção. A fábrica Henschel em Berlim estava colaborando com uma série de outras organizações alemãs de design e manufatura: Walterwerke, BMW e Rheinmetall-Borsig e Schmidding para motores, mas também Opta Radio, Siemens, Askania, AEG, Telefunken e Horn para outros eletrônicos e mecânicos sistemas de controle e os institutos de teste e pesquisa em DVL, AVA, DFS e outros.

Com uma vasta experiência da Bomba Glide Hs.293, a equipe de Wagner decidiu por um míssil controlado por linha de visão, pequeno o suficiente para ser manuseado por uma equipe de solo, mas carregando uma ogiva capaz de tornar um B.17 inutilizável de uma distância de uma explosão de proximidade de aproximadamente 8 jardas. O Henschel Hs.117 foi projetado para produção com receptor eletrônico E232 a / b & quotColmar & quot, e fusíveis de proximidade & quotKakadu & quot (da Donag), & quotMarabu & quot (Siemens) ou & quotFox & quot (AEG). Embora um sistema eletrônico de orientação fosse preferido, foi reconhecido que o tempo de desenvolvimento e a precisão do sistema atual tornariam o projeto inviável. Assim, um sistema de orientação óptica que comprovadamente funcionou foi escolhido para a primeira série de produção, sabendo-se que poderia ser atualizado para um sistema de orientação mais sofisticado, quando disponível.

Para permitir o melhor desempenho, o Hs.117 foi projetado para voar abaixo, mas o mais próximo possível da velocidade do som ao mesmo tempo em que é capaz de manter um bom controle e capacidade de manobra. Inicialmente Henschel prometeu uma velocidade de 75 & # 37 da velocidade do som ao RLM, com a intenção de aumentar esta velocidade durante o desenvolvimento. Dependendo da habilidade do apontador do míssil, Henschel estava prevendo uma trajetória de vôo inicialmente oscilante enquanto o alvo era adquirido, com um vôo final direto para o alvo. Um limitador de manobra foi incluído para manter a aceleração em cerca de 7,5G. O controle foi efetuado por spoilers oscilantes ou & quotWagnervators & quot (mostrado aqui à esquerda), que durante o vôo, oscilou uniformemente na borda de fuga da asa, até que um sinal de controle do solo causou uma maior deflexão acima ou abaixo da asa para induzir um rolamento na direção apropriada e uma correção de curso.

Para garantir a previsibilidade de vôo próximo à velocidade do som, a estrutura foi projetada para ser o mais simétrica possível. No entanto, uma assimetria era o nariz "duplo" com o gerador elétrico em um aspecto e a antena para o fusível de proximidade no outro. A segunda assimetria era o formato da fuselagem na cauda. Os testes foram feitos no túnel de vento de alta velocidade do DVL até 90 & # 37 da velocidade do som e o desenho inicial de uma cauda quadrada foi encontrado para dar falta de controle em velocidades mais altas. Como a fabricação de componentes de controle já estava comprometida, uma cauda mais fina não poderia ser usada, então, curiosamente, uma cauda cônica foi usada para atingir velocidades maiores. Os mísseis de produção também foram examinados cuidadosamente para remover fontes de defeito de superfície, para melhor velocidade.

Como mencionado anteriormente, o projeto Hs.117 foi projetado para ser manuseado desde o armazenamento até o lançamento. Uma bateria Hs.117 consistia em dois conjuntos, cada um com seis plataformas de lançamento. Ambos os conjuntos tinham um posto de mira com um observador e um apontador sentado em uma estrutura especial montada em gimble, que poderia seguir os rastros dos mísseis através do ar com telescópios especiais. Sob o comando, o observador direcionou seu telescópio para o alvo, que estava ligado ao telescópio do apontador. Quando pronto, o apontador lançaria o míssil e, com a ajuda do observador continuando a rastrear o inimigo, direcionaria o míssil para o alvo especificado até que o fusível de proximidade explodisse a ogiva.


Os primeiros testes de Schmetterling, a partir do solo e de lançamentos lançados no ar, começaram em maio de 1944, com os primeiros voos de teste de motor de foguete em agosto de 1944. Testados em Peenemunde, aproximadamente sessenta lançamentos foram feitos - cerca de vinte velocidades atingidas acima de Mach 0,90, sem deterioração perceptível no desempenho. No início, esperava-se que o míssil pudesse ser visto apenas pela luz do motor por até dez milhas. Mas mesmo quando testado com corantes coloridos no combustível, ou jogado no efluxo do foguete, o sinalizador do motor do foguete sozinho foi insuficiente para direcionar o míssil. Portanto, a fuselagem traseira foi modificada para carregar foguetes, como foram usados ​​no Hs.293.

O plano era iniciar a produção em fevereiro de 1945, com uma produção de 3.000 unidades por mês até outubro de 1945. No entanto, o projeto estava passando por atrasos significativos. O mais sério dos atrasos foi causado pelo motor BMW. A produção do motor estava atrasada, os números produzidos eram pequenos e o impulso disponível não atendia às especificações do projeto. Para seguir em frente, o Dr. Schmidt da Walterwerke propôs um projeto de motor com um regulador diferente, desempenho muito aprimorado e uma nova câmara de combustão mais leve e não resfriada. Ainda havia preocupações sobre o fornecimento de combustível dos tanques e a introdução de ar nas tubulações de combustível durante as manobras, mas esperava-se que isso fosse resolvido durante os testes. Para uma discussão sobre os problemas de design dos motores 109-558 e 109-729 para & quotSchmetterling & quot, siga este link de discussão.

No final, o processo de teste não foi concluído antes do fim da guerra e, portanto, & quotSchmetterling & quot nunca gerenciou a produção em nenhum grau e nunca viu serviço ativo.


Henschel Hs 117

ใน ปี 1941 ศาสตราจารย์ Herbert A. Wagner (ซึ่ง ก่อน หน้า นี้ รับผิดชอบ ขีปนาวุธ ต่อต้าน เรือ Henschel Hs 293) ได้ ประดิษฐ์ ขีปนาวุธ Schmetterling และ ส่ง ไป ยัง Reich Air Ministry (RLM) ซึ่ง ปฏิเสธ การ ออกแบบ เพราะ ไม่ ต้องการ เพิ่มเติม อาวุธ ต่อต้าน อากาศยาน

อย่างไรก็ตาม ใน ปี 1943 การ ทิ้ง ระเบิด ขนาด ใหญ่ ใน เยอรมนี เยอรมนี ทำให้ RLM เปลี่ยนใจ และ Henschel ได้ รับ สัญญา ใน การ พัฒนา พัฒนา และ ผลิต ทีม นี้ นำ โดย โดย ศาสตราจารย์ แว็ ก เนอ ร์ และ สร้าง อาวุธ ที่ ที่ กับ โลมา ปาก ขวด ที่ มี ปีก และ 1]

ใน เดือน พฤษภาคม ค.ศ. 1944 มี การ ทดสอบ ขีปนาวุธ 59 Hs 117 บาง ส่วน จาก ใต้ Heinkel He 111 กว่า ครึ่ง ของ การ ทดลอง ล้ม เหลว [2] การ ผลิต จำนวน มาก ได้ รับคำ สั่ง ใน เดือน ธันวาคม ค.ศ. 1944 โดย จะ เริ่ม ดำเนิน การ ใน เดือน มีนาคม ค.ศ. 1945 ขีปนาวุธ ปฏิบัติการ จะ ถูก ปล่อย จาก ตู้ ปืน ขนาด 37 ม ม. [1]

ใน เดือน มกราคม ค.ศ. 1945 ต้นแบบ สำหรับ การ ผลิต จำนวน มาก เสร็จ สิ้น และ คาด ว่า จะ มี การ ผลิต ผลิต ขีปนาวุธ 3.000 ลูก ต่อ เดือน [1] แต่ เมื่อ วัน ที่ 6 กุมภาพันธ์ SS-Obergruppenführer Hans Kammler ยกเลิก โครงการ

Hs 117H เป็น ตัวแปร อากาศ เปิด ตัว ได้ รับ การ ออกแบบ ที่ จะ เปิด ตัว จาก Dornier ทำ 217, Junkers จู 188 หรือ Junkers จู 388 [4] เวอร์ชัน นี้ ออกแบบ มา เพื่อ โจมตี เครื่องบิน ข้าศึก ที่ อยู่ เหนือ เครื่องบิน ที่ ปล่อย ออก ไป ได้ ไกล ถึง 5 กม. (16.000 ฟุต) [5]


Descripció tècnica [modifica]

El míssil Hs 117 tenia un cos cilíndric de 420 cm de llarg i 35 cm de diàmetre acabat en 4 aletes. A l'interior hi havia el cap explosiu, l'estació receptora de guiatge per ràdio Straßburg, Colmar o Brig, el control de vol per giroscopi i el motor BMW 109-558, però la seva empenta inadequada va portar a la consideració del Walter HWK109-729 com a alternativa. & # 912 & # 93 A ell, s'hi unien les dues ales i els dos coets impulsors-aceleradores Schmidding 109-533 carregats d'etilenglicol sòlid. El morro del Schmetterling tenia una forma asimètrica inusual, que es repetia en altres míssils de Henschel. En un costat hi havia un con sobresortint que contenia una espoleta de nearitat, mentre que a la part lateral i, lleugerament enrere, hi havia un petit aerogenerador que proporcionava energia eléctrica por al sistema de controle de vol del míssil. L'ús d'un generador evitava la necessitat del manteniment d'una bateria quan s'emmagatzemava el míssil. La secció del morro també contenia el cap explosiu de 40 kg. El sistema de controle de volume semelhante ao Hs 293, giroscopis utilitzant para controle de todos os de ràdio pel guiatge. & # 911 e # 93


Artigos de pesquisa relacionados

o Henschel Hs 129 foi uma aeronave de ataque ao solo da Segunda Guerra Mundial colocada em campo pelos alemães Luftwaffe. A aeronave entrou em combate na Tunísia e na Frente Oriental.

Henschel e amp Son foi uma empresa alemã, localizada em Kassel, mais conhecida durante o século 20 como fabricante de equipamentos de transporte, incluindo locomotivas, caminhões, ônibus e trólebus, e veículos blindados de combate e armas.

UMA míssil guiado por fio é um míssil guiado por sinais enviados a ele por meio de fios finos conectados entre o míssil e seu mecanismo de orientação, que está localizado em algum lugar próximo ao local de lançamento. Enquanto o míssil voa, os fios são enrolados atrás dele. Este sistema de orientação é mais comumente usado em mísseis antitanque, onde sua capacidade de ser usado em áreas de linha de visão limitada o torna útil, enquanto o limite de alcance imposto pelo comprimento do fio não é uma preocupação séria.

o Henschel Hs 293 era uma bomba planadora antinavio alemã controlada por rádio da Segunda Guerra Mundial com um motor de foguete pendurado sob ela. Foi desenhado por Herbert A. Wagner.

o Wasserfall Ferngelenkte FlaRakete foi um projeto de míssil superfície-ar supersônico guiado alemão da Segunda Guerra Mundial. O Wasserfall exigiu muito trabalho de desenvolvimento, que não foi concluído antes do final da guerra.

o Ruhrstahl Ru 344 X-4 ou Ruhrstahl-Kramer RK 344 foi um míssil ar-ar guiado por fio projetado pela Alemanha durante a Segunda Guerra Mundial. O X-4 não viu serviço operacional e, portanto, não foi comprovado em combate, mas inspirou considerável trabalho pós-guerra em todo o mundo, e foi a base para o desenvolvimento de vários mísseis antitanque lançados em terra, incluindo o Malkara.

o Henschel Hs 123 foi um bombardeiro biplano de mergulho monoposto e uma aeronave de ataque de apoio aproximado pilotado pelo alemão Luftwaffe durante a Guerra Civil Espanhola e do início a meio da Segunda Guerra Mundial. Ele provou ser robusto, durável e eficaz, especialmente em condições severas. Continuou a ter serviço de linha de frente até 1944, apenas para ser retirado devido à falta de fuselagens e peças sobressalentes úteis.

o Henschel Hs 127 foi um bombardeiro alemão que foi construído como dois protótipos, mas cancelado sem entrar em produção em massa.

o Messerschmitt Bf 162 era um avião bombardeiro leve projetado na Alemanha antes da Segunda Guerra Mundial, que voava apenas na forma de protótipo.

Wunderwaffe é alemão para "arma milagrosa" e foi um termo atribuído durante a Segunda Guerra Mundial pelo ministério da propaganda da Alemanha nazista a algumas "superarmas" revolucionárias. A maioria dessas armas, no entanto, permaneceram como protótipos, que ou nunca chegaram ao teatro de combate ou, se o fizeram, chegaram tarde ou em número muito insignificante para ter um efeito militar.

o Henschel Hs 294 foi um míssil guiado ar-mar desenvolvido pela Henschel Flugzeug-Werke AG na Alemanha durante a Segunda Guerra Mundial.

o Estabelecimento de propulsão de foguete em Westcott, Buckinghamshire no local da antiga RAF Westcott fez uma série de contribuições notáveis ​​no campo da propulsão de foguetes, incluindo informações sobre o projeto do foguete para o míssil Blue Streak e os sistemas de propulsão em Chevaline. Também era conhecido como Estabelecimento de projéteis guiados e PERME Westcott.

Wilhelm Schmidding de Bodenbach, Alemanha, foi um construtor de motores de foguete usados ​​para o RATO na Segunda Guerra Mundial. As fábricas estavam em Schmiedeberg e, a partir do verão de 1943, em Buschvorwerk.

Herbert Alois Wagner foi um cientista austríaco que desenvolveu inúmeras inovações nos campos da aerodinâmica, estruturas de aeronaves e armas guiadas. Ele é mais famoso pela função de Wagner, descrevendo a sustentação instável nas asas e desenvolvendo a bomba planadora Henschel Hs 293.

o Blohm & amp Voss BV 143 foi um dos primeiros protótipos de bomba planadora assistida por foguete desenvolvida pela Luftwaffe alemã durante a Segunda Guerra Mundial.

o Henschel Hs 298 foi um míssil ar-ar alemão movido a foguete da década de 1940, projetado pelo professor Herbert Wagner de Henschel.

o BMW 109-558 é um motor de foguete sustentador de combustível líquido desenvolvido pela BMW em sua fábrica de Bruckm & # 252hl, na Alemanha durante a Segunda Guerra Mundial.


Daftar isi

Pada tahun 1941, Profesor Herbert A. Wagner (yang sebelumnya bertanggung jawab atas rudal anti-kapal Henschel Hs 293) menciptakan rudal Schmetterling dan menyerahkannya ke Kementerian Udara Reich (RLM) rudal kapal Henschel Hs

Namun, pada 1943 pemboman skala besar di Jerman menyebabkan RLM berubah pikiran, dan Henschel diberi kontrak untuk mengembangkan dan memproduksinya. Tim tersebut dipimpin oleh Profesor Wagner, dan menghasilkan senjata yang agak menyerupai lumba-lumba hidung botol dengan sayap menyapu e ekor silang. & # 911 e # 93

Pada Mei 1944, 59 Hs 117 rudal diuji, beberapa diluncurkan dari lambung Heinkel He 111. Lebih dari setengah percobaan gagal. & # 912 & # 93 Produksi massal diperintahkan pada bulan Desember 1944, dengan penyebaran akan dimulai pada bulan Maret 1945. Rudal operasional akan diluncurkan dari rangka pembawa meriam 37 mm. & # 911 e # 93

Pada Januari 1945, sebuah purwarupa untuk produksi massal selesai, dan produksi 3.000 rudal sebulan telah diantisipasi, & # 911 & # 93 tetapi pada 6 de fevereiro, SS-Obergruppenführer Hans Kammler membatalkan proyek.


Henschel Hs 117

Henschel Hs 117 Schmetterling (alemão para Butterfly) foi um projeto de míssil terra-ar alemão guiado por rádio desenvolvido durante a Segunda Guerra Mundial. Havia também uma versão ar-ar, o Hs 117H.

Em 1941, o professor Herbert A. Wagner inventou o míssil Schmetterling, mas a ideia foi rejeitada pelo Ministério da Aeronáutica do Reich, pois se considerou que não havia necessidade de mais armamento antiaéreo. Quando a situação do ar mudou para pior em 1943, o projeto foi revivido e Henschel recebeu um contrato para desenvolver e fabricar o Schmetterling. A equipe foi liderada pelo professor Wagner e produziu uma arma que lembra um golfinho nariz de garrafa com asas abertas e cauda cruciforme.

O Hs 117 era um equipamento de aparência estranha com um nariz assimétrico, um cone pontiagudo à direita e uma hélice à esquerda que era usada para alimentar um pequeno gerador. Dois foguetes de reforço foram transportados para a decolagem, montados acima e abaixo da fuselagem. Um terceiro foguete foi construído no míssil.

A potência de lançamento foi fornecida por dois foguetes de combustível sólido Schmidding 109-553, cada um dos quais forneceu 3.850 libras de empuxo por quatro segundos, levando o foguete a 680 mph. O foguete interno era normalmente um BMW 109-558, que usava R-Stoff (que se auto inflamou) como combustível principal e SV-Stoff para oxidar o R-Stoff. Também era possível usar o foguete Walter 109-729, que usava gasolina de baixa octanagem (Br-Stoff), SV-Stoff e um dispositivo de ignição a álcool.

Como o Enzian, os operadores usaram uma mira telescópica e um joystick para guiar o míssil usando barras Wagner controladas por solenóide na borda de fuga das asas e o avião da cauda por controle de rádio. O míssil usava o sistema Kehl / Strassburg para direcionar - usando quatro frequências de rádio, duas para os controles verticais e duas para os horizontais. Uma quinta frequência foi usada para detonar a ogiva, que foi detonada por fusíveis acústicos e fotoelétricos de proximidade, a 10–20 m do alvo.

Características

Foguetes de reforço: 2 foguetes de combustível sólido Schmidding 109-553,

Foguete principal: motor de foguete BMW 109-558 de combustível líquido

Propelentes: SV-Stoff (ácido nítrico), Tonka

Sistema de orientação: orientação visual MCLOS, controles de rádio

O primeiro lançamento de teste do Hs 117 foi feito em maio de 1944 e, em setembro, vinte e dois lançamentos foram feitos, incluindo alguns com o Hs 117H. Mais da metade dos testes falharam, mas a produção em massa foi encomendada em dezembro de 1944, mas as primeiras entregas não eram esperadas até março de 1945, e a produção total não era esperada até novembro.

Em janeiro de 1945, um protótipo para produção em massa foi concluído com os mísseis operacionais a serem lançados de um carro de canhão de 37 mm e esperava-se que a primeira unidade operacional entraria em serviço em março. Uma produção de 3.000 mísseis por mês foi antecipada, mas em 6 de fevereiro de 1945, o projeto foi cancelado.

Ele também tinha uma variante lançada do ar, o Hs 117H, projetado para ser lançado de um Dornier Do 217, Junkers Ju 188 ou Junkers Ju 388. Essa versão foi projetada para atacar aeronaves inimigas até 5 km acima da aeronave de lançamento.


Junkers Ju 88 G-1

Embora o Junkers Ju 88 com dois motores provasse ser útil para quase qualquer função ou tarefa, a versão G desta aeronave tinha uma fuselagem especialmente adaptada com o foco em ser um caça noturno. Ele estava melhor armado e também equipado com um radar VHF FuG 220 Lichtenstein SN-2 90 MHz padrão usando antenas de oito dipolos & # 8220Hirschgeweih & # 8221 (eng: Deer antler), que foram posicionadas no nariz (segunda foto).

Muitos lutadores noturnos da Luftwaffe voaram Junkers Ju 88 durante suas carreiras. Um deles é o major Heinrich Prinz zu Sayn Wittgenstein (87 vitórias), que está enterrado no cemitério de Ysselsteyn, na Holanda.

Lutador noturno Junkers Ju 88 G1 em exibição no Deutsches Technikmuseum Berlim, Alemanha

O nariz do Ju 88 com as antenas “Hirschgeweih” projetando-se do Deutsches Technikmuseum Berlim, Alemanha

Uma visão da cabine do Junkers Ju 88 G1 Deutsches Technikmuseum Berlim, Alemanha


Armas secretas italianas da segunda guerra mundial

Desde 1941, a Itália vinha desenvolvendo um projeto ultrassecreto para instalar foguetes guiados a bordo de porta-aviões.
A revolucionária arma de foguete guiada de Campini Capron, o DAAC, que mais tarde se tornaria o Henschel HS-117 Schmetterling (‘Butterfly’) de Hitler, foi o projétil selecionado.
Informações classificadas sobre a bomba voadora V-1 e outros projetos de aeronaves foram adquiridas e, em seguida, descartadas quando o arquiteto naval de Ansaldo, Lino Campagnoli (1911–1975), emitiu planos para que o encouraçado Impero se transformasse em um moderno porta-aviões.

Davide F Jabes e Stefano Sappino
Porta-aviões Impero: o navio de capital Carying V-1 dos poderes do eixo,
publicado pela Fonthill Media.

Fonte confiável?
Outras armas secretas italianas?

MG1962a

Desde 1941, a Itália vinha desenvolvendo um projeto ultrassecreto para instalar foguetes guiados a bordo de porta-aviões.
A revolucionária arma de foguete guiada de Campini Capron, o DAAC, que mais tarde se tornaria o Henschel HS-117 Schmetterling (‘Butterfly’) de Hitler, foi o projétil selecionado.
Informações classificadas sobre a bomba voadora V-1 e outros projetos de aeronaves foram adquiridas e, em seguida, descartadas quando o arquiteto naval de Ansaldo, Lino Campagnoli (1911–1975), emitiu planos para que o encouraçado Impero se transformasse em um moderno porta-aviões.

Davide F Jabes e Stefano Sappino
Porta-aviões Impero: o navio de capital Carying V-1 dos poderes do eixo,
publicado pela Fonthill Media.


Armas estranhas, malucas e maravilhosas da Segunda Guerra Mundial

Em 31 de maio de 1942, a Marinha Imperial Japonesa iniciou um ataque ao porto (Porto para os britânicos) em Sydney, Austrália, usando 3 submarinos anões da classe Ko-hyoteki. Com uma tripulação de 2 homens e armados com um par de torpedos, os pequenos submarinos tinham o potencial de causar danos tremendos a qualquer navio à tona. O Japão não foi o único país a empregar submarinos anões durante a Segunda Guerra Mundial, e os submarinos anões foram apenas uma das muitas tentativas verdadeiramente inovadoras de adaptar armas para fins especiais durante aquela guerra que gerou tanto progresso tecnológico. Hoje listamos algumas daquelas armas que nos parecem particularmente interessantes com tecnologia bacana, embora você, como sempre, seja bem-vindo para indicar outras armas que acredita pertencerem a essa lista.

(Veja nossos muitos artigos sobre a Segunda Guerra Mundial)

Cavando Mais Profundamente

Submarinos Midget (Japão, Alemanha, Itália, Reino Unido)

Dever perigoso a ponto de ser quase uma missão suicida, bravos homens em um ou dois submarinos minúsculos (as tripulações chegariam a 5 homens) poderiam ser usados ​​para colocar explosivos em navios ancorados (minas de lapa), torpedos de fogo ou coletar informações de primeira mão sobre portos ou praias. Os submarinos anões podem ser lançados de um submarino maior ou mesmo de um navio de superfície. Às vezes, o submarino não era nada mais do que um torpedo guiado por um homem, destinado a ser uma missão suicida. Somente o Japão utilizou tal arma durante a guerra. Chamou o Kaiten, o torpedo suicida foi uma medida de desespero do Japão, e os resultados do combate são contestados, com um sucesso geralmente mínimo atribuído ao torpedo tripulado. Algumas fontes afirmam que um navio-tanque americano, embarcação de desembarque e escolta de contratorpedeiro foram afundados por Kaitens, com a perda de 187 vidas americanas. Kaiten os tripulantes mortos em combate totalizaram 106. Os usos notáveis ​​de submarinos anões incluíram o infame ataque a Pearl Harbor em 7 de dezembro de 1941, quando um dos 5 submarinos anões japoneses implantados conseguiu torpedear o encouraçado americano West Virginia. Em outras ações, subs anões japoneses torpedearam o encouraçado britânico Ramillies e afundou um petroleiro britânico. Os britânicos usaram submarinos anões contra o encouraçado alemão Tirpitz, navio irmão do Bismarck, enquanto Tirpitz estava escondido em um fiorde norueguês. o Classe X O submarino britânico, com uma tripulação de 3 homens, conseguiu minar o navio de guerra gigante e causar danos incapacitantes, deixando o navio fora de serviço por um ano. A Itália fez bom uso de submarinos anões em seu ataque aos navios britânicos no porto de Alexandria, Egito, em 1941. O torpedo tripulado submarino anão italiano chamado por suas tripulações de "porcos" entrou furtivamente no porto se escondendo sob os navios britânicos que entravam no local de segurança (aparente) do porto, e anexou minas a vários navios. As minas detonaram e afundaram com sucesso 2 navios de guerra britânicos e um petroleiro norueguês, enquanto danificaram outro contratorpedeiro britânico. A maioria das marinhas modernas atualmente possui algum tipo de submarino anão em suas frotas.

Armas “inteligentes” guiadas (EUA, Alemanha, Japão)

A Segunda Guerra Mundial foi de fato uma guerra de tecnologia, com medidas e contra-medidas de todos os tipos abrangendo todas as partes dos sistemas de combate e armas, incluindo, mas não se limitando a, radar e sonar, codificação e quebra de código, os primeiros computadores, jato e foguete motores, metalurgia, munições explosivas fundidas por proximidade, cabeçote de squash e armas anti-blindagem de carga em forma, faróis de navegação e sistemas exóticos para manter os submarinos submersos por mais tempo. Entre as prioridades dos cientistas e engenheiros de todos os lados estava a criação de armas guiadas remotamente para obter uma precisão precisa no lançamento de munições. Usar um torpedo tripulado ou um avião tripulado projetado para voar diretamente contra um alvo inimigo era uma missão suicida e não realmente um avanço tecnológico, embora essas fossem de fato armas “guiadas” em todo o seu envelope de viagem. Sistemas mais sofisticados incluíam o alemão Fritz X, uma bomba planadora guiada sem motorização controlada por rádio do avião bombardeiro que a lançou e guiou a bomba para o navio ou outro alvo visado. Os alemães usaram bombardeiros Dornier Do-217 como aeronave de entrega e alcançaram o primeiro sucesso conhecido de arma guiada de precisão ao afundar o encouraçado italiano Roma depois que os italianos se renderam aos Aliados em 1943. Muitos outros navios aliados foram severamente danificados pelos Fritz X bombas, embora os Aliados eventualmente tenham percebido que as bombas estavam sendo guiadas pelo bombardeiro que vagou pela área após o lançamento da bomba. Assim, os bombardeiros foram imediatamente perseguidos por qualquer fogo antiaéreo ou interceptores disponíveis para interromper a orientação. O bloqueio eletrônico do sinal de controle de rádio também foi empregado para derrotar o Fritz X. Uma bomba guiada alemã movida a foguete, a Henschel Hs 293, também obteve algum sucesso, afundando ou danificando vários navios aliados, embora tivesse menos sucesso contra alvos terrestres, como pontes. As tentativas menos bem-sucedidas de armas guiadas incluíram esforços americanos para criar bombas guiadas gigantes, enchendo bombardeiros pesados ​​com explosivos e usando controles remotos de rádio para lançá-los contra o alvo. Infelizmente, a tecnologia não foi totalmente desenvolvida, e as bombas voadoras tiveram que ser retiradas com um piloto vivo dentro, que mais tarde iria saltar para fora assim que o avião estivesse em segurança em seu caminho e o controle de rádio fosse alcançado. A televisão primitiva também fazia parte do conjunto de orientação. O irmão mais velho de John F. Kennedy, mais tarde presidente dos Estados Unidos, Joseph Kennedy, foi morto junto com outro aviador naval em tal tentativa, quando seu bombardeiro B-24 carregado de explosivos explodiu com ele ainda nos controles. O programa, denominado Operação Afrodite, foi executado em esforços paralelos pela Marinha dos Estados Unidos e pela Força Aérea do Exército dos Estados Unidos, sem nenhum sucesso real. Outra tentativa malsucedida dos Estados Unidos de obter orientação de artilharia de precisão foi a ideia maluca de usar pombos dentro de bombas planadoras. Os pombos deveriam observar uma tela de vídeo e tentar pousar no convés do navio inimigo (alvo) abaixo com sensores elétricos retransmitindo a atenção da orientação do pássaro para as superfícies de controle. Este plano falhou e foi cancelado, embora tenha sido revivido para uma segunda tentativa em 1948! Um sucesso que os americanos tiveram foi com a chamada bomba guiada AZON, que foi usada para destruir pontes com certo sucesso. Outros esforços americanos para conseguir bombas guiadas não deram frutos até depois da Segunda Guerra Mundial. O alemão Mistel foi outra tentativa malfadada de uma arma de alta tecnologia, usando um bombardeiro Ju-88 carregado de explosivos sem piloto pendurado sob um avião monomotor menor, geralmente um caça como o Fw-190. O piloto decolaria o avião nas costas e, em seguida, lançaria a bomba sobre o alvo. Embora os acertos tenham sido reivindicados pelos pilotos, os Aliados não registraram nenhum sucesso Mistel ataques. Embora os britânicos fizessem experiências com bombas guiadas por rádio, seu programa era insignificante em comparação com o dos alemães. Cientistas japoneses também embarcaram no band-wagon de bombas guiadas por rádio, incluindo bombas planadoras e bombas movidas a foguetes, bem como bombas guiadas por calor, embora a guerra tenha terminado antes que a versão efetiva dessas armas fosse produzida. Today we have television guided, IR and heat seeking guidance, laser guided, computer program guided, GPS guided, and other sorts of precision guided weapons that have their historical beginnings in World War II.

(Observação: Attempts to design air-to-air guided missiles were not successful during World War II.)

Surface to air guided missile (Germany)

As Germany was increasingly plastered by Allied heavy bombers in 1943, German efforts to design a practical Surface to air guided missile (SAM) became urgent, with the result being the Henschel Hs 117, known as the Schmetterling (Buterfly). Using radio controlled guidance by an operator with a telescopic sight, the Hs 117 was equipped with either a photoelectric or acoustic proximity fuse so that the missile just had to get near (10 to 20 meters) the target plane to blow up and hopefully take the offending aircraft down. The weapon was finally ready for production in January of 1945, but the war conditions had deteriorated so badly for Germany that the project was cancelled. A variant was being developed for use in the air to air mode.

Proximity Fuses (US and Germany)

While not a guided precision weapon, proximity fuses allowed both anti-aircraft artillery and anti-aircraft rockets to perform at a much increased effectiveness over the previous timed fuse airburst or impact fused weapons previously employed. The US led the way in this field, especially in the American 5 inch naval gun anti-aircraft role. Proximity fuse technology also created a new breed of airburst artillery shells that spread their effective kill and wound zone beyond that of ground burst artillery shells. Again, the Americans were leaders in this field.

RADAR (Britain, US, Germany, Japan)

While the discovery of radio waves echoing off distant objects was made around the turn of the 20 th Century, by the start of World War II the use of radar to detect incoming airplanes and to locate ships at sea for early warning and distant targeting became common. Advances in the technology of radar quickly followed, with radar used as a navigation device for bombing at night and in poor weather, for weather forecasting, and for finding submarines surfaced at night to replenish their batteries and air supply. Radar jamming, both electronic and with metal chaff, became a major priority, and early attempts to create stealthy reduced radar signature forms and coatings began. Radar detectors also became an important device, especially used against German U-boats utilizing radar for self-defense at night. Radar was used to direct anti-aircraft fire and to accurately establish the altitude of incoming bombers as well as to direct fighter-interceptors. Radar even became an effective anti-mortar and artillery tool, detecting the source of incoming mortar and artillery shells, thus enabling counter-battery fire. Night-fighter aircraft were developed with onboard radar sets to allow for accurate shooting at of enemy planes that could not be seen at night. (Radar gunsights were developed just after World War II based on research started during the war.)

Night vision devices (Germany, United States)

Much as the ability of birds to fly caused men to long for the sky, the ability of cats and other creatures to see in dark made men envious, especially military types. People tried to research night vision ability as early as the late 19 th Century, with the first success in infrared night vision enhancement technology coming in the 1930’s courtesy of the Dutch firm Phillips, just in time to be developed for use in World War II. In the US, RCA was also developing first generation night vision technology, though it was left to the German army to be the first to field such a device in 1939, though not until 1943 did night vision devices, based on infrared illumination, become more widely used. The US Army also developed and deployed a cumbersome infrared illuminator and vision scope mounted on the M-1 Carbine for use at night, and the systems was used with some success, especially in the Pacific theater. While World War II night vision systems required an infrared illuminator (a large light not visible to the naked eye) in order to work, later systems were able to intensify light well enough to preclude the need for a separate illuminator and even later thermal vision night vision devices would be able to see in complete darkness. It must be noted that the IR illuminator used on early night vision devices was easily seen by the enemy if the enemy had IR viewing equipment, making the use of such devices dangerous to the user.

Question for students (and subscribers): What is your favorite use of innovative technology from World War II? Informe-nos na seção de comentários abaixo deste artigo.

If you liked this article and would like to receive notification of new articles, please feel welcome to subscribe to History and Headlines by liking us on Facebook and becoming one of our patrons!

Agradecemos muito o seu leitor!

Evidência Histórica

Para obter mais informações, consulte & # 8230

The featured image in this article, a photograph of a Japanese Ko-hyoteki class midget submarine, believed to be the vessel known as Midget No. 14, being raised from the bed of Sydney Harbour, is available from the Collection Database of the Australian War Memorial under the ID Number: 060696. This image is of Australian origin and is now in the public domain because its term of copyright has expired.

About Author

Major Dan is a retired veteran of the United States Marine Corps. He served during the Cold War and has traveled to many countries around the world. Prior to his military service, he graduated from Cleveland State University, having majored in sociology. Following his military service, he worked as a police officer eventually earning the rank of captain prior to his retirement.


HITLER&rsquoS SMART BOMBS

THE FEDDEN MISSION came away from Nordhausen having seen for themselves the starkest extremes of the Nazis&rsquo secret weapon programme. On the one hand they had witnessed the abject horror and depravity of the slave labour system, while, on the other, they could not fail to marvel at the most technologically advanced weapons programme the world had ever seen.

The following day they flew south to Munich, where they inspected the BMW engine works and billeted overnight at the American 3rd Army Intelligence Centre at Freising. On Thursday 21 June the mission divided into two groups, with four members of the team departing by road to Rosenheim and the BMW rocket development department at Bruckmühl. As chief engineer and technical director in charge of BMW&rsquos jet, piston and rocket development, Bruno Bruckmann accompanied them, explaining that BMW&rsquos intensive development of rockets had started in early 1944 on RLM orders. It was conducted under the control of an engineer named Szibroski, an SS man who had disappeared before the American Army arrived in April 1945.

Many of the German rocket projects had their origins in the early stages of the war, or even before it in some cases, but the impetus to wheel them out had come with the intensification of the Allied strategic bombing campaign. As we have seen, the V-1 cruise missile and the V-2 ballistic missile were dedicated offensive weapons and had no defensive role to play, but rocket-power could be used very effectively to augment the existing ground-based anti-aircraft defences of the Luftwaffe&rsquos flak regiments, or to fill the gaps left by the increasingly overstretched fighter aircraft. In addition to their use as surface-to-air anti-aircraft missiles, the range of other applications included aircraft-launched weapons &ndash either air-to-air against other aircraft, or air-to-surface against ground targets or shipping &ndash and even surface-to-surface as a form of artillery. When combined with a variety of guidance systems this array of missiles became the first generation of smart bombs, although, lacking the technology to home in on a target autonomously without human guidance, it might be more accurate to describe them as semi-smart bombs.

Press photograph released in November 1944 of an HS 293 anti-shipping missile with Walter 109-507 B liquid-fuelled rocket motor.

THE BMW TYPE 109-718

As it turned out the first rocket motor the Fedden Mission was shown by Bruckmann wasn&rsquot a weapon at all. The BMW Type 109-718 liquid-fuelled rocket &ndash 109 was also the RLM prefix for rockets &ndash was a small non-expendable assistor unit designed to be used in conjunction with the BMW 003 jet engine to which it was fitted at the rear end a configuration known as the BMW 003R. The internal and external main chambers were liquid-cooled by one of the fuels, nitric acid, passing round a spiral tube inside the outer member. The whole engine unit weighed 176lb (80kg) and gave a thrust of 2,755lb (1,250kg) for three to five minutes. The fuels used were nitric acid and a mixture of hydrocarbons. Fuel consumption was 5.5kg per 1,000kg of thrust per second, and it was estimated that with two of these assistors a Messerschmitt Me 262 could climb to 30,000ft (9,150m) in three minutes.

Unlike the expendable RATO units, this was specifically intended for rapid climb or bursts of speed in an emergency. The 109-718 had the potential to turn a jet fighter into an ultra-high-speed interceptor while at the same time conserving the rocket fuel through intermittent operation, unlike the dedicated rocket-powered aircraft such as the Messerschmitt Me 163B. It was hoped that further development work would enable the unit to use standard jet fuel in due course. The fuel pumps on the 109-718 were the centrifugal type and ran at 17,000rpm, with the fuel pressure at 50 atmospheres. A special drive with universal joints was provided on the jet engine for these pumps, and ran at 3,000rpm. The fuel flow to the unit was controlled by spring-loaded valves operated by a servo motor, and a special automatic control was being developed for this purpose to prevent an inequality of thrust on twin-engine jet aircraft.

The 109-718 rocket units were tested on several prototypes including the Me 262 C-2b Heimatschützer (&lsquohome defender&rsquo), and the single-engined Heinkel He 162E in March 1945. (The Heimatschützer was the Me 262 C-1a with a single Walter 109-509 S1 fitted in the rear fuselage and exhausting under the tail.) Bruckmann informed Fedden that twenty of the 109-718 units had been constructed, and the production time for each one was around 100 hours.

Stand-alone RATO units were frequently used by the Germans for a number of reasons, either to gain additional lift at take-off for heavily-laden aircraft, to provide extra thrust, or to save jet fuel. The Walter HWK 109-500 Starthilfe (&lsquotake-off assistor&rsquo) was a liquid-fuelled rocket pod which could provide 1,100lb (500kg) of thrust for thirty seconds &ndash the thrust was doubled as they were always used in symmetrical pairs. Once the fuel was exhausted the pods were jettisoned by the pilot and returned to the ground by parachute to be serviced and used again. The HWK 109-500 entered service in 1942 and around 6,000 were manufactured by Heinkel. They were used extensively on a wide range of aircraft, including the under-powered Jumo 004-engined Arado Ar 234.

At BMW&rsquos rocket development department at Bruckmühl, Rosenheim, Bruno Bruckmann and W.J. Stern pose beside a BMW 109-558 liquid-fuelled rocket motor for the Henschel Hs 117.

SCHMETTERLING

The next rocket Fedden&rsquos team examined at Bruckmühl was the BMW 109/558 for the Henschel Hs 117 ground-to-air guided missile. The Hs 117 was codenamed Schmetterling (&lsquobutterfly&rsquo), although it looked more like a slender bottlenose dolphin with central sweptback wings and a cruciform tail. The nose was asymmetrical with the warhead extension on one side and a small generator propeller on the other. Designed by a Henschel team led by Professor Herbert Alois Wagner, the Hs 117 was a medium-altitude missile targeting enemy bombers flying between 6,000 and 33,000ft (1,800m to 10,000m).

o Schmetterling was launched from a modified 37mm gun-carriage with two Schmidding 109-553 solid diglycol-fuel boosters, one above and one below the main body, giving a total thrust of about 6,000lb (2,700kg) for a duration of sixty-five seconds before falling away. After take-off the BMW rocket motor provided the main power, giving the 992lb (450kg) missile a speed of between 558 to 620mph (900 to 1,000km/h) taking it up to an altitude between 20,000 and 30,000ft (9,150m). In order not to exceed the velocity at which the missile was stable, the engine&rsquos thrust was regulated by sliding valves in the nozzle actuated by a small electric servo activated by a Mach meter. The Hs 117 was radio controlled by two operators using a telescopic sight and joystick. Once near to a target, acoustic and photoelectric sensors homed in automatically from a range of 33 to 66ft (10 to 20m), and proximity fuses detonated its lethal payload of 55lb (25kg) of explosives.

Surface-to-air weapons: V-2 (A4) rocket, Wasserfall, Bacham Natter, Rheintochter, Enzian and Feurlilie.

Hs 298 air-to-air missile, an Me 328 shown with Argus pulsejets, the Fi 103 R manned version of the V-1, an X-4, Hs 117 Schmetterling and the Fi 103 V-1.

The BMW 109-558 rocket motor took the form of a long tube slender enough to fit within the missile&rsquos casing. It contained a compressed air tank, an SV-Stoff nitric acid tank, and a tank for the R-Stoff, a composite of hydrocarbon self-igniting propellant codenamed &lsquoTonka&rsquo. The combustion chamber was cooled by the nitric acid and was about 18in (46cm) long with a diameter of 5in (12.5cm). A photograph in the Fedden Mission report shows Bruckmann and Stern standing behind a complete rocket assembly which was 8ft (2.4m) long overall. According to Fedden:

The whole equipment weighed 352lb (160kg), took forty to sixty hours to make, and the production price was 400 to 500 Marks. 120 had been made. It was stated that successful experiments had been carried out with this equipment, and the rocket motor which was a clean workmanlike job had started production in parallel with the Henschel flying missile.

A &lsquoworkmanlike job&rsquo is probably what passes for high praise in engineering circles. The Hs 117 underwent fifty-nine test firings, of which more than half failed. Even so, full-scale manufacture commenced in December 1944, with an eventual target output of 3,000 a month projected for the end of 1945, but production was cancelled by February 1945. Some Hs 117s were test launched from a Heinkel He 111, and there was also to be an air-to-air variant of the missile, the Hs 117H, which looked the same but did not have the booster rockets. This would have been air-launched from a Dornier Do 217, Junkers Ju 88 or Ju 388, but it never made it into operation.

Wasserfall (&lsquowaterfall&rsquo) was a higher-altitude missile than Schmetterling, and it was also much more complex and expensive to build as it was, in essence, a scaled-down version of the A4 (V-2) liquid-fuelled rocket. As an anti-aircraft missile it required a far smaller payload and range/duration than the V-2, and consequently it was only 25ft 9in (7.85m) long and weighed 8,160lb (3,700kg) roughly half the size of an A4. In appearance Wasserfall resembled the V-2, with the same streamlined bullet shape for the body, but with four short wings or fins on the midsection to provide additional control. The fins on the tail also had control surfaces, and steering was supplemented by rudder flaps within the rocket exhaust.

Unlike the V-2, Wasserfall was designed to stand for several months at a time and be ready to be fired at short notice, something for which the V-2&rsquos highly volatile liquid-oxygen fuel was not suited. Instead the new rocket motor for the smaller missile, developed by Dr Walter Thiel, was based on Visol (vinyl isobutyl ether) and SV-Stoff fuel. This mixture was forced into the combustion chamber by pressure and spontaneously combusted on contact. Guidance was by radio control, although for night-time operations a system known as Rheinland was developed, incorporating a radar for tracking and a transponder for location which would be read by radio direction finder on the ground. An alternative system using radar beams was also under development. Because of concerns about accuracy, Wasserfall&rsquos original 220lb (100kg) warhead was replaced by a far bigger 517lb (235kg) of explosives. Instead of hitting a single aircraft directly, the idea was that the warhead would detonate in the middle of a bomber formation and the blast effect would bring down several aircraft in one go. The missile itself was designed to break up to ensure that only small pieces fell on to friendly territory below.

The Fritz-X was a glider-bomb designed to pierce the armoured plating on Allied ships. (JC)

Another view of a captured Hs 293 anti-shipping bomb. (USAF)

Wasserfall was developed and tested at Peenemünde and in total thirty-five test launches had been completed by the time this facility was evacuated in February 1945. Subsequently the resources and manpower needed for the development of the defensive Wasserfall programme was diverted to the higher priority and offensive A4. It would appear that Hitler&rsquos quest for taking vengeance on his enemies, whether symbolic or real, overrode the need to defend the German homeland. Produção do Wasserfall had been scheduled to begin at a huge underground factory at Bleicherode in October 1945, by which time, of course, it was already too late.

The air-launched Hs 298 radio-controlled rocket-powered missile never entered full production and the project was abandoned in January 1945.

X-4 wire-guided air-to-air missile. Pods on two wing-tips contained spools for the control wires. (USAF)

A RHEINTOCHTER E ENZIAN HIGH-ALTITUDE MISSILES

In parallel to Schmetterling e Wasserfall, several other anti-aircraft missiles were also in development, in particular the Rheintochter e Enzian high-altitude missiles. Rheintochter, named after Richard Wagner&rsquos Rhine Maidens, was a multi-stage solid-fuel surface-to-air missile developed by Rheinmetall-Borsig for the German Army. Working from the top down it had four small paddle-like control surfaces near the nose for steering, plus six sweptback fins at the end of the first stage and a further four at the rear of the second, booster stage. It was 20ft 8in (6.3m) long overall including the booster stage, and the body had a diameter of 1ft 9.25in (54cm). Unusually the exhaust from the main sustainer motor was vented through six &lsquoventuri&rsquo (small tubes) positioned one between each main fin. This was partly for additional stabilisation in flight, but also because the 300lb (136kg) warhead was situated behind the motor and would be attached before launch. o Rheintochter R-I was launched from a ramp or from a converted gun mounting. Guidance was via a joystick, radio control and line of sight observation.

After eighty-two test launches, further development of the Rheintochter R-I, and the proposed operational version R-II, was abandoned in December 1944 because it was only attaining the same altitude as the other missile systems. A third version of the Rheintochter, the R-III, was to have been a far sleeker affair with a liquid-propellant rocket motor for the main stage, and it did away with the second stage in favour of solid-fuelled boosters mounted to the side of the missile. Only six test firings were made.

Rheintochter III two-stage anti-aircraft missile. (NARA)

Taifun (&lsquotyphoon&rsquo) was one of the smallest of the unguided anti-aircraft rockets. Its design was instigated by Sheufen, an officer at Peenemünde, who wanted to produce a back-up or alternative to the more complicated missiles. Further developed by the Elektromechanische Werke in Karlshagen, the Taifun was an unguided missile, 6ft 4in (1.93m) long and 4in (10cm) in diameter with four small stabilizing fins at its base. The simple rocket was fuelled by a hypergolic mixture of nitric acid and Optolin &ndash a mix of aromatic amines, gasoline, Visol and catechol &ndash pressure-fed into the combustion chamber. Burnout occurred after two and a half seconds, by which time the rocket was travelling at 2,237mph (3,600km/h) up to a maximum altitude of 39,370ft (12,000m). The rockets would have been fired in salvoes of up to thirty at a time from a rocket launcher mounted on an adapted gun mounting. Delays in the development of the rocket motor meant that Taifun was never deployed operationally. However, if this unsophisticated and unguided weapon had been ready earlier it could have caused devastation among the Allied bombers.

Schmetterling, Wasserfall, Rheintochter e Taifun were not the only surface-to-air or anti-aircraft missiles under development in Germany. Others included the Rheinmetall-Borsig Feuerlilie F-25/F-55 which Fedden had come across at Völkenrode, and also the Messerschmitt Enzian E-4 which, because of its antecedence in the Me 163 rocket aircraft, is covered in the following chapter. The third type of rocket motor shown to the Fedden Mission at the BMW works in Bruckmühl was the BMW 109-548 used on the Ruhrstahl X-4. Described by Fedden as an &lsquointer-aircraft rocket&rsquo &ndash they were still finding the vocabulary for all this new weaponry in 1945 &ndash the X-4 was a formidable wire-guided air-to-air missile suitable for use with the fast jets such as the Messerschmitt Me 262.

Developed by Dr Max Kramer at Ruhrstahl, the X-4 was designed to operate from a distance outside the range of an enemy bomber&rsquos guns. In flight the missile was stabilised by spinning slowly about its axis, at about 60rpm, thus ironing out any asymmetry in thrust. A joystick in the launch aircraft&rsquos cockpit sent control signals via two wires feeding out from spools or bobbins located within the pods at the end of two opposing wings, and small spoilers on the tail steered the X-4. The wire-guidance system was a means of circumventing the possibility of radio signals being jammed. The range for attack was 0.93 to 2.17 miles (1.5 to 3.5km) and the total payout of the wires was around 3.5 miles (5.5km). According to Fedden the compact 109-548 rocket propelled the X-4 at 620mph (1,000km/h) and had an endurance of up to twenty seconds. The X-4 was 6ft 7in (2m) long and had a wingspan of almost 2ft 3in (73cm) with four midsection fins swept at 45°.

Carrying a 45lb (20kg) fragmentation device in the warhead, the X-4 had a lethal range of about 25ft (8m) and positioning it accurately proved very difficult to judge for the controller. Accordingly a type of acoustically triggered proximity fuse known as a Kranich was also fitted, and this was sensitive to the Doppler shift in engine/propeller sound as it approach and began to pass the enemy bombers. Flight testing commenced in August 1944, initially wing-mounted on a Focke-Wulf Fw 190, but later on the Junkers Ju 88. The X-4 had been intended for single-seat fighters such as Messerschmitt&rsquos jet-engined Me 262, or possibly the Dornier Do 335, but the impracticality of the pilot managing to simultaneously fly the aircraft and control the missile were too great. Production of the airframe began in early 1945. This was designed to be assembled by unskilled labour, in other words forced labour, and incorporated low-cost materials such as plywood for the main fins. It is claimed that 1,000 were readied, but the Allied raids on BMW&rsquos production facility in Stargard held up delivery of the vital 109-548 rocket motors. Consequently the X-4 was never officially delivered to the Luftwaffe. A smaller version of the X-4, the X-7, was designed as an anti-tank missile, but there is no evidence of this ever being used.

&lsquoWINGED TORPEDOES&rsquo

The other main application of air-to-surface guided weaponry was against Allied shipping. A guided air-launched weapon greatly increased the potential range and accuracy of an attack in comparison with a direct attack using conventional bombs or torpedoes, especially on heavily guarded vessels such as warships. The Blohm & Voss company developed a series of &lsquowinged torpedoes&rsquo or glider bombs, such as the Bv 143 which featured a pair of straight wings and a cruciform tail with guidance along a fixed course provided by an internal gyroscopic system. A feeler arm extending beneath the main body acted as a gauge, keeping the missile on a level glide just above the surface of the sea by activating a booster rocket within the fuselage. Four Bv 143s were constructed and tested in 1943, but the project was shelved until a more reliable automatic altimeter could be devised.

The Bv 246 Hagelkorn (&lsquohailstone&rsquo) was an un-powered glider bomber which did enter limited production in late 1943. Once released both of these glider bombs lacked external guidance input to ensure they hit their targets.

The most successful of the anti-shipping missiles were the fully guided Fritz X and the Henschel 293. The Fritz X was officially designated as the FX 1400, although confusingly it was also known as the Ruhrstahl SD 1400 X, the Kramer X-1 and the PC 1400X. Derived from the high-explosive thick-walled 3,080lb (1,400kg) SD 1400 Splitterbombe Dickwandig (&lsquofragmentation bomb&rsquo), the Fritz X had a more aerodynamic nose, four midsection stub wings and a box tail at the rear housing the spoilers or control surfaces. Engineer Max Kramer had begun development work on the missile before the war, fitting radio-controlled spoilers to free-falling 550lb (250kg) bombs, and in 1940 the Ruhstahl company became involved because of their experience in the development and production of conventional unguided bombs.

Fritz X did not have a rocket motor and upon release it glided all the way to the target, guided visually from the launch aircraft via radio-control inputs from a joystick. The missile was designed specifically to be armour-piercing, up to 5.1in (130mm) thick, and the main targets were heavy cruisers or battleships. There was a micro delay in the fuse to ensure it detonated inside the target and not immediately upon impact. Minimum release height was 13,000ft (4,000m), although 18,000ft (5,500m) was preferred if conditions permitted, and it had to be released at least 3 miles (5km) from the target. The greater release height reduced the threat of anti-aircraft fire, which was especially important as the carrier aircraft had to maintain a steady course to keep the gliding bomb on target. It was essential that the device remained in sight of the controller and a flare was fitted in the tail to assist with this. In practice the carrier aircraft had to decelerate upon release, achieved by climbing slightly and then dipping back down, so that inertia would place the bomb ahead of the aircraft.

Fritz X had been launched from a Heinkel He 111 during testing, but in operation the Dornier Do 217 K-2 medium-range bomber became the main carrier. It was first deployed in July 1943 in an attack on Augusta harbour in Sicily, but its greatest success was with the sinking of the Italian battleship Roma on 9 September 1944. Bombers equipped with Fritz X also saw action at Salerno against American and British vessels. It is estimated that almost 1,400 Fritz X bombs were produced in total, including those used in flight testing.

Unlike the Fritz X the Henschel Hs 293 anti-shipping guided missile did have a liquid-fuelled rocket engine, slung beneath its belly, to allow operation at lower altitudes and from a far greater distance &ndash estimated at up to 10 miles (16km). Designed by Professor Herbert Alois Wagner, the Hs 293 project was started in 1939 on the pure glide bomb principle, but Henschel und Sohn added the rocket unit which provided a short burst of speed. Over 1,000 Hs 293s were manufactured and a variety of rockets were used, usually the Walter HWK 109-507, producing a thrust of 1,300lb (590kg), or the slightly more powerful BMW 109-511 with 1,320lb (600kg) of thrust. The main element of the weapon was a high-explosive 650lb (295kg) charge within a thin-walled metal casing creating, in essence, a demolition bomb. Measuring 12ft 6in (3.82m) wide, it had a pair of straight wings with conventional ailerons for control, plus a tail with side fins and a lower fin. While the Fritz X was intended for use against armoured ships, the Hs 293 was specifically for un-armoured vessels, hence the thinner casing. The missile was radio controlled via a joystick control box in the carrier aircraft, and flares attached to the rear ensured the operator maintained visual contact.

The Hs 293 was the first operational guided missile to sink a ship. The British sloop HMS Egret was attacked and sunk in the Bay of Biscay on 27 August 1943, with the loss of 194 of her crew. Numerous other Allied vessels were also sunk in the Mediterranean.

The Allies&rsquo efforts to counter the German radio-controlled weapons by jamming the signals were given a boost when an intact Hs 293 was recovered from a Heinkel He 177 which had crashed on Corsica, and improvements made to the radio jamming equipment had a major impact on the weapon&rsquos effectiveness. In response the Germans modified 100 Hs 293A-1s as Hs 293Bs with wire link, and as the television-guided Hs 293D, although neither of these were operational by the end of the war. The Hs 293H was an experimental air-to-air variant.

The Rheintochter RIII&rsquos liquid-fuel rocket engine on display at RAF Cosford. (JC)

With the experience gained with the Hs 293, Henschel developed several other anti-shipping guided missiles along the same principle. The Hs 294 was designed specifically to penetrate the water and strike a ship below the waterline, and consequently it resembled the Hs 293 but with a sleeker conical nose and two Walter 109-507D rockets mounted tight up against the wing roots. On the Hs 293F the Henschel engineers experimented with a delta wing configuration without a tail unit. The Hs 295 featured an elongated fuselage with enlarged, slightly bulbous warhead and the wings from the Hs 294, while the Hs 296 combined the rear fuselage of the Hs 294 with the control system of the Hs 293 and the bigger warhead of the Hs 295.

BATTLEFIELD ROCKETS

Rockets were also developed to augment or supplant the army&rsquos conventional surface artillery. Rheinbote (&lsquoRhine messenger&rsquo) was developed by the Rheinmetall-Borsig company in 1943. Strictly speaking this slender four-stage rocket cannot be classified as a smart bomb as it was aimed solely by the positioning of the launcher and possessed no internal or external guidance systems. Apart from the V-2 (A4) this was the only other long-range ballistic missile to enter service during the Second World War.

The biggest drawback with conventional artillery is that the guns are often too heavy to be easily and swiftly transported to where they are needed, especially in a fast-moving battlefield. This had not been an issue in the opening stages of the war when the German Blitzkrieg spread with great rapidity thanks in no small measure to the Luftwaffe&rsquos overwhelming aerial superiority and the ability to provide airborne bombardment in support of the ground forces. But the big guns had other drawbacks. Their range was limited and while the biggest guns bombarding Paris in the First World War might have had a range of just over 62 miles (100km), their huge size made them virtually immobile. Conventional artillery also required a constant supply chain to feed the guns. Rockets, on the other hand, had enormous range and were far more easily transported, although there might be an issue with accuracy. o Rheinbote project was initiated to put the battlefield rocket concept to the test.

A US Air Force officer examines an unidentified rocket-propelled guided bomb. Said to be just 8ft long (2.5m) it was most probably a test model. (CMcC)

In appearance Rheinbote was a slender spike 37ft (11.4m) long, with stabilising fins at the rear and three sets of smaller fins arranged at the end of each of the four stages. The rockets were fuelled by diglycol-dinitrate solid-fuel propellant and in tests achieved a blistering Mach 5.5, or 4,224mph (6,800km/h), the fastest speed of any missile at the time. Rheinbote was transported and launched from a modified V-2 (A4) rocket trailer which had an elevating launch gantry. The missile was aimed by orientating the trailer itself and elevating the gantry, although the accuracy of this method of aiming is highly questionable.

In tests the Rheinbote carried an 88lb (40kg) warhead, only 6.5 per cent of the missile&rsquos total mass, up to 48 miles (78km) into the atmosphere to a range of up to 135 miles (220km), but for shorter ranges some of the stages could be removed. Over 200 were produced and they were used in the bombardment of Antwerp from November 1944 into early 1945. After the war ended the Soviets helped themselves to the designs at Rheinmetall-Borsig&rsquos Berlin-Marienfelde headquarters, but in general the Rheinbote was considered to be lacking accuracy, thanks partly to the effect of the stage separations, and lacking punch as the payload was too small and the almost vertical high-speed delivery tended to bury it deep into the ground.

Time and time again the question is asked why these sophisticated and deadly weapons failed to turn the tide of war in Germany&rsquos favour. And just as with the aircraft the same answer invariably comes back: it was too little too late. Time and resources had been squandered in developing a multitude of missile projects instead of focussing on a few well-defined goals. Priorities were in a constant state of flux and by the time those projects which had any potential were put into production resources had either become stretched to the limit or they were being misdirected into other areas. As Albert Speer commented in his memoirs, Inside the Third Reich:

I am convinced that substantial deployment of Wasserfall from the spring of 1944 onward, together with an uncompromising use of jet fighters as air defence interceptor, would have essentially stalled the Allied strategic bombing offensive against our industry. We would have been well able to do that &ndash after all, we managed to manufacture 900 V-2 rockets per month at a later time when resources were already much more limited.

By the final stages of the war the measures to defend the Reich were becoming ever more ingenious, and more desperate.


Assista o vídeo: Los MISILES Tierra-Aire de Alemania Guiados de la Segunda Guerra Mundial. By TRU